[1] install cuda
wget -c http://developer.download.nvidia.com/compute/cuda/6_5/rel/installers/cuda-repo-l4t-r21.2-6-5-prod_6.5-34_armhf.deb
sudo dpkg -i cuda-repo-l4t-r19.2_6.0-42_armhf.deb
sudo apt-get update
sudo apt-get install cuda-toolkit-6-5
sudo usermod -a -G video $USER
(add 32bit lib to bashrc)
echo "# Add CUDA bin & library paths:" >> ~/.bashrc
echo "export PATH=/usr/local/cuda/bin:$PATH" >> ~/.bashrc
echo "export LD_LIBRARY_PATH=/usr/local/cuda/lib:$LD_LIBRARY_PATH" >> ~/.bashrc
source ~/.bashrc
(to check the nvcc version)
$nvcc -V
(to install the sdk)
go to /usr/local/cuda/bin
./cuda-install-samples-6.5.sh /home/your_user_folder
Note: Many of the CUDA samples use OpenGL GLX and open graphical windows. If you are running these programs through an SSH remote terminal, you can remotely display the windows on your desktop by typing "export DISPLAY=:0" and then executing the program. (This will only work if you are using a Linux/Unix machine or you run an X server such as the free "Xming" for Windows). eg:
export DISPLAY=:0
cd ~/NVIDIA_CUDA-6.5_Samples/2_Graphics/simpleGL
[2] install opencv
the downloaded file is libopencv4tegra-repo_l4t-r21_2.4.10.1_armhf.deb
$ sudo dpkg -i libopencv4tegra-repo_l4t-r21_2.4.10.1_armhf.deb
$ sudo apt-get update
$ sudo apt-get install libopencv4tegra libopencv4tegra-dev
If you bumped into the dependency issue
$sudo apt-get -f install
$ sudo apt-get install libopencv4tegra libopencv4tegra-devdownload cudnn from https://developer.nvidia.com/cuDNN
the current caffe requires cudnn >3, i used v3 armv7
download the ./installCaffe.sh
[3] get Caffe
go to https://gist.github.com/jetsonhacksdownload the ./installCaffe.sh
#!/bin/sh | |
# Install and compile Caffe on NVIDIA Jetson TK1 Development Kit | |
sudo add-apt-repository universe | |
sudo apt-get update | |
sudo apt-get install libprotobuf-dev protobuf-compiler gfortran \ | |
libboost-dev cmake libleveldb-dev libsnappy-dev \ | |
libboost-thread-dev libboost-system-dev \ | |
libatlas-base-dev libhdf5-serial-dev libgflags-dev \ | |
libgoogle-glog-dev liblmdb-dev -y | |
sudo usermod -a -G video $USER | |
# Git clone Caffe | |
sudo apt-get install -y git | |
git clone https://github.com/BVLC/caffe.git | |
cd caffe && git checkout dev | |
cp Makefile.config.example Makefile.config | |
make -j 4 all | |
make -j 4 runtest | |
build/tools/caffe time --model=models/bvlc_alexnet/deploy.prototxt --gpu=0 |
Noted that,
in order to use cudnn, you need to change makefile, turn on/add some options
http://elinux.org/Jetson/cuDNNSince tk1 is cuda 3.2, I changed the arch in the Makefile.config to allow compiling only this architecture.
--------------------------------------------------------------------------------------------------------------------------
Reference:
*http://elinux.org/Jetson/Installing_CUDA
*https://developer.nvidia.com/linux-tegra-rel-21
*http://developer.download.nvidia.com/embedded/OpenCV/L4T_21.1/README.txt
*http://developer.download.nvidia.com/embedded/OpenCV/L4T_21.1/README.txt
* http://petewarden.com/2014/10/25/how-to-run-the-caffe-deep-learning-vision-library-on-nvidias-jetson-mobile-gpu-board/
No comments:
Post a Comment